

INDIAN SCHOOL AL WADI AL KABIR

Mid Term Examination 2025-26

Class IX Marking Scheme-Set 1 23.09.2025

1	(D) $100\sqrt{3}$ cm ²
2	(D)positive x - axis
3	(A)AC = DE
4	(B) 105°
5	(B)8
6	(A) Surfaces
7	(A) a unique real number
8	(B)Q and R
9	(B)8-11
10	(C)8cm,12cm, 12cm
11	(A) $\frac{125}{512}$
12	(C)DE = 5 cm, $\angle E = 60^\circ$
13	(C) equal to 120°
14	(A) universal truths in all branches of mathematics
15	(B) $40^\circ, 140^\circ$
16	(A) $\sqrt{32}$ cm
17	(C) I and III quadrants
18	(B)8
19	(d) Assertion (A) is false but reason (R) is true.
20	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)
	SECTION B

21	(i) 10, 16 (ii) $9+5+3+2=19$	<div style="border: 1px solid black; padding: 5px; display: inline-block; text-align: center;"> 1m 1m </div>
22	(i) (0,0) (ii) (4,0) (iii) (0,-2) (iv) $x = 2, y = 3$	<div style="border: 1px solid black; padding: 5px; display: inline-block; text-align: center;"> ½ m × 4 </div>
23	$\angle PQS + \angle PQR = 180^\circ$ (Linear Pair) $\angle PRQ + \angle PRT = 180^\circ$ (Linear Pair) $\angle PQS + \angle PQR = \angle PRQ + \angle PRT$ (Things equal to the same thing. Euclid's Axiom) $\angle PQS = \angle PRT$	<div style="border: 1px solid black; padding: 5px; display: inline-block; text-align: center;"> ½ m ½ m ½ m ½ m </div>
OR	$\angle AOE = 5y$ $2y + 2y + 5y = 180^\circ$ (Angles on a straight line) $y = 20^\circ$ $\angle FOC = 5y + 2y = 100^\circ + 40^\circ = 140^\circ$	<div style="border: 1px solid black; padding: 5px; display: inline-block; text-align: center;"> ½ m ½ m ½ m ½ m </div>
24	$AB=AC$ & $AP=AQ$ (Given) $AB-AP=AC-AQ$ $BP=CQ$ Euclid's Axiom used: "If equals be subtracted from equals, the remainders are equal."	<div style="border: 1px solid black; padding: 5px; display: inline-block; text-align: center;"> ½ m ½ m 1m </div>
25	(a) Let $x = 18.\overline{48}$ $100x = 1848.\overline{48}$ $100x - x = 1848 - 18 = 1830$ $x = \frac{1830}{99} = \frac{610}{33}$	<div style="border: 1px solid black; padding: 5px; display: inline-block; text-align: center;"> ½ m ½ m ½ m ½ m </div>
OR	(b)	$ \begin{aligned} \sqrt{72} + \sqrt{800} - \sqrt{18} &= \sqrt{6 \times 6 \times 2} + \sqrt{2 \times 2 \times 2 \times 10 \times 10} - \sqrt{3 \times 3 \times 2} \\ &= 6\sqrt{2} + 20\sqrt{2} - 3\sqrt{2} = (6 + 20 - 3)\sqrt{2} \\ &= 23\sqrt{2} \end{aligned} $

SECTION C

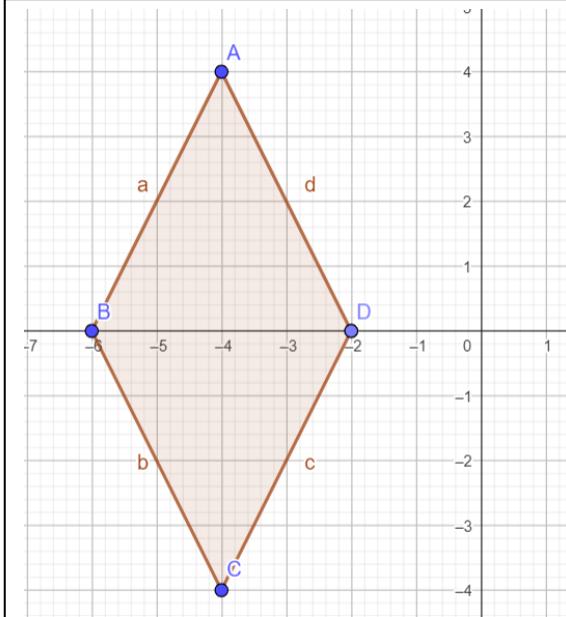
Section C consists of 6 questions of 3 marks each.

26

$$\frac{2}{(216)^{\frac{-2}{3}}} - \frac{1}{(243)^{\frac{-2}{5}}} + \frac{3}{(144)^{\frac{-1}{2}}}$$

$$2 \times 6^2 - 3^2 + 3 \times 12$$

$$72 - 9 + 36 = 99$$

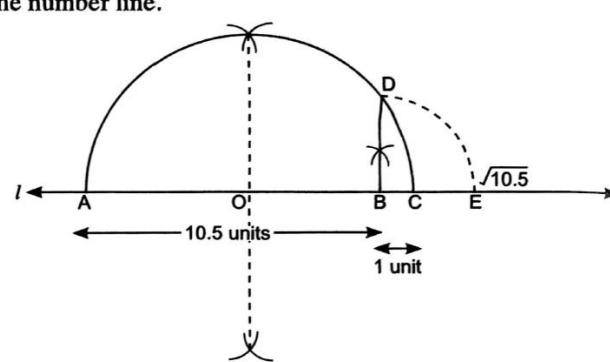

$$\frac{1}{2} \text{ m} + \frac{1}{2} \text{ m} + \frac{1}{2} \text{ m}$$

1m

$\frac{1}{2} \text{ m}$

27

$$\text{Area} = 16 \text{ sq. units } (\frac{1}{2} \text{ m})$$



Axes - $\frac{1}{2}$ m
Plotting
Points: $4 \times \frac{1}{2}$ m

28

(a) Locate $\sqrt{10.5}$ geometrically on a number line.

- (i) Draw a line AB such that $AB = 10.5$ units on the number line.
- (ii) Extend the line l further from B up to C such that $BC = 1$ unit.
- (iii) Find the mid-point of AC and mark it as O.
- (iv) Draw a semicircle with centre O and radius OC.
- (v) Draw a line perpendicular to AC passing through point B and cut the semicircle at D.
- (vi) Taking B as centre, draw an arc of radius BD which intersects the number line at E.
- (vii) Point E represents $\sqrt{10.5}$ on the number line.
 $\therefore BD = BE = \sqrt{10.5}$ units, with B as zero.

$\frac{1}{2}$ m
 $\frac{1}{2}$ m
 $\frac{1}{2}$ m
 $\frac{1}{2}$ m
 $\frac{1}{2}$ m
 $\frac{1}{2}$ m

OR

(b)

$$\begin{aligned}
 \frac{4+\sqrt{5}}{4-\sqrt{5}} + \frac{4-\sqrt{5}}{4+\sqrt{5}} &= \left(\frac{4+\sqrt{5}}{4-\sqrt{5}}\right) \times \left(\frac{4+\sqrt{5}}{4+\sqrt{5}}\right) + \left(\frac{4-\sqrt{5}}{4+\sqrt{5}}\right) \times \left(\frac{4-\sqrt{5}}{4-\sqrt{5}}\right) \\
 &= \frac{(4+\sqrt{5})^2}{(4)^2 - (\sqrt{5})^2} + \frac{(4-\sqrt{5})^2}{(4)^2 - (\sqrt{5})^2} = \frac{16+5+8\sqrt{5}}{16-5} + \frac{16+5-8\sqrt{5}}{16-5} \\
 &= \frac{1}{11}[21+8\sqrt{5}+21-8\sqrt{5}] = \frac{42}{11}
 \end{aligned}$$

1 m
1½ m
½ m

29

Sol: $s = \frac{40+70+90}{2} = \frac{200}{2} = 100$ m.

Heron's formula for the area, A , of a triangle is given by:

$A = \sqrt{s(s-a)(s-b)(s-c)}$. Substituting the values:

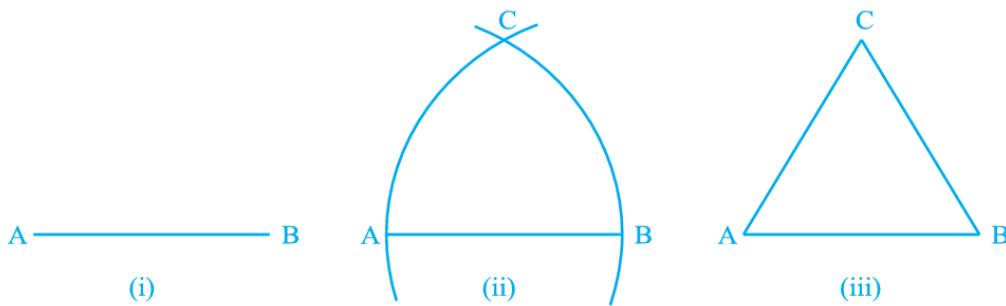
$A = \sqrt{100(100-40)(100-70)(100-90)}$. This simplifies to:

$A = \sqrt{100 \times 60 \times 30 \times 10} = \sqrt{1800000}$. The area can be further simplified as:

$$= \sqrt{18 \times 10^5} = \sqrt{180 \times 10^4} = 100\sqrt{180} = 100\sqrt{36 \times 5} = 100 \times 6\sqrt{5} = 600\sqrt{5} \text{ m}^2$$

$$A = 600 \times 2.24 = 1344 \text{ m}^2.$$

$$\text{Cost} = 1344 \times 500 = \text{₹}67200$$


½ m
1m
½ m
½ m
½ m

30

(a) Any three Euclid's axioms. (1m $\times 3$)

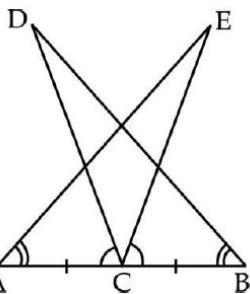
OR

(b) A line segment of any length is given, say AB.

(1m)

Draw a circle with point A as the centre and AB as the radius. Draw another circle with point B as the centre and BA as the radius. The two circles meet at a point, say C. draw the line segments AC and BC to form ΔABC .

$$AB = AC,$$


$$AB = BC \text{ (Radii of the same circle).} \quad (1m)$$

From these two facts, and Euclid's axiom that things which are equal to the same thing are equal to one another, you can conclude that $AB = BC = AC$. (1m)

So, ΔABC is an equilateral triangle.

31

Given: To Prove:

Proof: A + C + B = 180°

$$\angle DCA + \angle DCE = \angle ECB + \angle DCE \text{ (Equals added to equals)}$$

$$\angle ACE = \angle BCD.$$

Consider triangles $\triangle DBC$ and $\triangle EAC$:

$$BC = AC \text{ (Given)}$$

$$\angle DBC = \angle EAC \text{ (Given)}$$

$$\angle BCD = \angle ACE: \text{ (Proved above)}$$

$$\triangle DBC \cong \triangle EAC \text{ (ASA } \cong)$$

$$BD = AE \text{ (CPCT)}$$

½ m

½ m

½ m

½ m

½ m

½ m

½ m

SECTION D

32

$$(i) \quad \frac{2 - \sqrt{5}}{2 + 3\sqrt{5}} \times \frac{2 - 3\sqrt{5}}{2 - 3\sqrt{5}} = \frac{(2 - \sqrt{5})(2 - 3\sqrt{5})}{(2 + 3\sqrt{5})(2 - 3\sqrt{5})}.$$

$$(2 - \sqrt{5})(2 - 3\sqrt{5}) = 4 - 6\sqrt{5} - 2\sqrt{5} + 3(5) = 4 - 8\sqrt{5} + 15$$

$$19 - 8\sqrt{5}$$

$$\frac{19 - 8\sqrt{5}}{-41} = -\frac{19}{41} + \frac{8\sqrt{5}}{41}.$$

$$a = \frac{8}{41} \text{ and } b = -\frac{19}{41}$$

½ m

½ m

½ m

½ m

1m

$$(ii) \quad \frac{1}{3} = 0.\bar{3} \quad \frac{1}{2} = 0.5$$

Any two irrational numbers.

½ m + ½ m

½ m + ½ m

33

Case I:

$$3k+4k+5k=60 \quad k = 60/12 = 5$$

$$a = 15 \text{ cm}, b = 20 \text{ cm}, c = 25 \text{ cm}$$

$$S = 30 \text{ cm}$$

$$A_1 = \sqrt{30(30-15)(30-20)(30-25)}. A_1 = \sqrt{30 \times 15 \times 10 \times 5}. A_1 = \sqrt{22500}.$$

$$A_1 = 150 \text{ cm}^2.$$

1 m

 $\frac{1}{2}$ m

1 m

 $\frac{1}{2}$ m $\frac{1}{2}$ m $\frac{1}{2}$ m $\frac{1}{2}$ m $\frac{1}{2}$ m

Case II:

$$2x - 4 + 2x + 1 + x + 8 = 60$$

$$5x = 55$$

$$x = 11$$

$$a = 18, b = 23, c = 19, s = 30 \text{ cm}$$

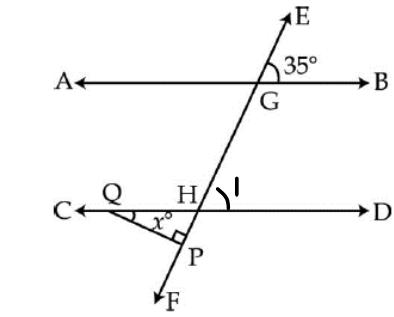
$$\text{Area} = \sqrt{s(s-a)(s-b)(s-c)} = \sqrt{30(30-18)(30-23)(30-19)}$$

$$= \sqrt{30(12)(7)(11)} = 6\sqrt{770} \text{ cm}^2$$

34

(a)

Marks	0-10	10-30	30-45	45-50	50-60
No. of students	8	32	18	10	6
Width	10	20	15	5	10
Adjusted Frequency	4	8	6	10	3

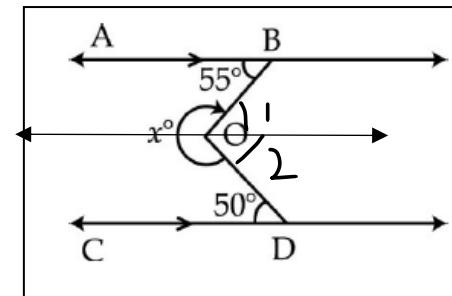

Correct Table – 2m**Correct graph- 3m****OR**

(b) Histogram(3m) frequency polygon (2m)

35

$\angle 1 = 35^\circ$ Corresponding angles
 $\angle QHP = 35^\circ$ V.O.A.
 In $\triangle PQH$,
 $\angle PQH + \angle QHP + \angle HPQ = 180^\circ$
 $\angle PQH + 35^\circ + 90^\circ = 180^\circ$
 $\angle PQH = 55^\circ$

$\frac{1}{2}m$
 $\frac{1}{2}m$
 \cdot
 $\frac{1}{2}m$
 $\frac{1}{2}m$



(ii)

Const :
 Draw $l \parallel AB$
 $\angle 1 = 55^\circ$ (alternate angles)
 $\angle 2 = 50^\circ$ (Alternate angles)
 $x = 360^\circ - (\angle 1 + \angle 2)$
 $= 360^\circ - 105^\circ = 255^\circ$

OR

$\frac{1}{2}m$
 $\frac{1}{2}m$
 $\frac{1}{2}m$
 $1m$
 $\frac{1}{2}m$

(b)

Given: A transversal AD intersects two lines PQ and RS at points B and C respectively. Ray BE is the bisector of $\angle ABQ$ and ray CG is the bisector of $\angle BCS$; and $BE \parallel CG$

To prove: $PQ \parallel RS$ (given : to prove: $\frac{1}{2}m$)

Proof:

It is given that ray BE is the bisector of $\angle ABQ$.

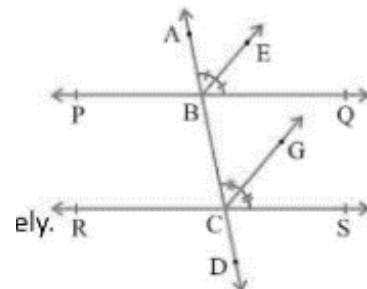
Therefore, $\angle ABE = \frac{1}{2} \angle ABQ$ (1)

Similarly, ray CG is the bisector of $\angle BCS$.

Therefore, $\angle BCG = \frac{1}{2} \angle BCS$ (2)

But $BE \parallel CG$ and AD is the transversal.

Therefore, $\angle ABE = \angle BCG$
(Corresponding angles axiom) (3)


Substituting (1) and (2) in (3), you get

$$\frac{1}{2} \angle ABQ = \frac{1}{2} \angle BCS$$

That is, $\angle ABQ = \angle BCS$

$\frac{1}{2}m$
 $\frac{1}{2}m$
 $\frac{1}{2}m$
 $\frac{1}{2}m$
 $\frac{1}{2}m$

Correct figure: 1m



the corresponding angles formed by transversal AD with PQ and RS; and are equal. Therefore, $PQ \parallel RS$ (Converse of corresponding angles axiom)

($\frac{1}{2} m + \frac{1}{2} m$)

SECTION E

36

Based on the above information and the given figure answer the following questions:

(i) Parallel Lines (AB \parallel EF and AB \parallel CD. Lines parallel to the same line) ($\frac{1}{2} m + \frac{1}{2} m$)
 (ii) $\angle CEF = 76^\circ - 26^\circ = 50^\circ$ ($\angle ABE = \angle BEF$, Alt. int. angles) ($\frac{1}{2} m + \frac{1}{2} m$)

(iii)(a) $\angle BGC = 76^\circ$ (alternate interior angles) (1m)

$\angle BGC = \angle GEC + \angle GCE$ (exterior angle property)

$$\angle GCE = 76^\circ - 26^\circ = 50^\circ \quad (1m)$$

OR

(a) $\angle ECD = 180^\circ - 50^\circ$ (Linear Pair) ($\frac{1}{2} m$)

$$= 130^\circ \quad (\frac{1}{2} m)$$

$$\text{reflex } \angle ECD = 360^\circ - 130^\circ = 230^\circ \quad (1m)$$

37

Based on the above information answer the following questions.

(i) $s = (17 + 17 + 16)/2 = 50/2 = 25 \quad (\frac{1}{2} m + \frac{1}{2} m)$
 (ii) $25-16 = 9 \text{ cm} \quad (\frac{1}{2} m + \frac{1}{2} m)$
 (iii) (a)

$$\begin{aligned} \text{Area} &= \sqrt{s(s-a)(s-b)(s-c)} = \sqrt{25(25-17)(25-17)(25-16)} \quad (\frac{1}{2} m) \\ &= \sqrt{25(8)(8)(9)} \quad (\frac{1}{2} m) \\ &= 5(8)(3) = 120 \text{ m}^2 \quad (\frac{1}{2} m) \end{aligned}$$

$$\text{Total power generation capacity} = 120 \times 200 = 24000 \text{ watts} \quad (\frac{1}{2} m)$$

OR

Area of 1 array = 120 m^2 (Calculated above) (1 $\frac{1}{2}$ m Marks to be given as per iii(a))
 Installation cost of 5 arrays = $120 \times 5 \times 1200 = ₹720000 \quad (\frac{1}{2} m)$

38

(i) Photocopy Shop(-2, 3) and Recreation Room(4,-4)

(ii) 8 UNITS

(iii) (a) (i) (-3, 0) X axis (ii) (2, -1) IV

(iii) (4, 3) I

(iv) (-15, -1) III

OR

(b) Playground (-3,-4)

Abscissa of Photocopy Shop(-2) and ordinate of the Medical Room.(2)

Difference: $-2 - 2 = -4$ or 4
